2,070 research outputs found

    VLBI detection of the HST-1 feature in the M87 jet at 2 cm

    Get PDF
    A bright feature 80 pc away from the core in the powerful jet of M87 shows highly unusual properties. Earlier radio, optical and X-ray observations have shown that this feature, labeled HST-1, is superluminal, and is possibly connected with the TeV flare detected by HESS in 2005. It has been claimed that this feature might have a blazar nature, due to these properties. To examine the possible blazar-like nature of HST-1, we analyzed lambda 2 cm VLBA archival data from dedicated full-track observations and the 2 cm survey/MOJAVE VLBI monitoring programs obtained between 2000 and 2009. Applying VLBI wide-field imaging techniques, the HST-1 region was imaged at milliarcsecond resolution. Here we present the first 2 cm VLBI detection of this feature in observations from early 2003 to early 2007, and analyze its evolution over this time. Using the detections of HST-1, we find that the projected apparent speed is 0.61 +/- 0.31 c. A comparison of the VLA and VLBA flux densities of this feature indicate that is mostly resolved on molliarcsecond scales. This feature is optically thin between lambda 2 cm and lambda 20 cm. We do not find evidence of a blazar nature for HST-1.Comment: 9 pages, 9 figures, accepted by Astronomy and Astrophysic

    Production of intense highly charged ion beams with SERSE

    Get PDF
    The source SERSE is operational at LNS since June 1998 and many improvements have been carried out in this period. The frequency has been increased from 14.5 GHz to 18 GHz and the use of two frequency heating has given positive results. Metallic ion production has been tested by means of a high temperature oven and the preliminary results are described. Tests of magnetic field scaling and frequency scaling have confirmed the results of previous tests with SC-ECRIS at lower frequency and seems to suggest that the upgrading of the source to higher frequency may be considered

    2MASS NIR photometry for 693 candidate globular clusters in M31 and the Revised Bologna Catalogue

    Full text link
    We have identified in the 2MASS database 693 known and candidate globular clusters in M31. The 2MASS J,H,K magnitudes of these objects have been transformed to the same homogeneous photometric system of existing near infrared photometry of M31 globulars, finally yielding J,H,K integrated photometry for 279 confirmed M31 clusters, 406 unconfirmed candidates and 8 objects with controversial classification. Of these objects 529 lacked any previous estimate of their near infrared magnitudes. The newly assembled near infrared dataset has been implemented into a revised version of the Bologna Catalogue of M31 globulars, with updated optical (UBVRI) photometry taken, when possible, from the most recent sources of CCD photometry available in the literature and transformed to a common photometric system. The final Revised Bologna Catalogue (available in electronic form) is the most comprehensive list presently available of confirmed and candidate M31 globular clusters, with a total of 1164 entries. In particular, it includes 337 confirmed GCs, 688 GC candidates, 10 objects with controversial classification, 70 confirmed galaxies, 55 confirmed stars, and 4 HII regions lying within ~3 deg. from the center of the M31 galaxy. Using the newly assembled database we show that the V-K color provides a powerful tool to discriminate between M31 clusters and background galaxies, and we identify a sample of 83 globular cluster candidates, which is not likely to be contaminated by misclassified galaxies.Comment: 9 pages,5 figures,accepted for publication in Astronomy & Astrophysics ASCII (commented) version of the tables 2,3,4 are available at http://www.bo.astro.it/M3

    High-resolution X-ray spectroscopy of the low and high states of the Seyfert 1 galaxy NGC 4051 with Chandra LETGS

    Full text link
    Methods. We analyse two observations taken with the Low Energy Transmission Grating Spectrometer of Chandra. We investigated the spectral response to a sudden flux decrease by a factor of 5, which occurred during the second observation. Results. We detect a highly ionised absorption component with an outflow velocity of -4670 km/s, one of the highest outflow velocity components observed in a Seyfert 1 galaxy. The spectra contain a relativistic O VIII Ly alpha line, and four absorption components spanning a range in ionisation parameter xi between 0.07 and 3.19. An emission component producing radiative recombination continua of C VI and C V appears during the low state. The black body temperature decreases with the drop in flux observed in the second observation. Conclusions. For all absorber components we exclude that the ionisation parameter linearly responded to the decrease in flux by a factor of 5. The variability of the absorber suggest that at least three out of four detected components are located in the range 0.02-1 pc. ABRIDGEDComment: Accepted by A&A, 14 pages, 9 figure

    Barrier dysfunction or drainage reduction: differentiating causes of CSF protein increase

    Full text link
    BACKGROUND Cerebrospinal fluid (CSF) protein analysis is an important element in the diagnostic chain for various central nervous system (CNS) pathologies. Among multiple existing approaches to interpreting measured protein levels, the Reiber diagram is particularly robust with respect to physiologic inter-individual variability, as it uses multiple subject-specific anchoring values. Beyond reliable identification of abnormal protein levels, the Reiber diagram has the potential to elucidate their pathophysiologic origin. In particular, both reduction of CSF drainage from the cranio-spinal space as well as blood-CNS barrier dysfunction have been suggested ρas possible causes of increased concentration of blood-derived proteins. However, there is disagreement on which of the two is the true cause. METHODS We designed two computational models to investigate the mechanisms governing protein distribution in the spinal CSF. With a one-dimensional model, we evaluated the distribution of albumin and immunoglobulin G (IgG), accounting for protein transport rates across blood-CNS barriers, CSF dynamics (including both dispersion induced by CSF pulsations and advection by mean CSF flow) and CSF drainage. Dispersion coefficients were determined a priori by computing the axisymmetric three-dimensional CSF dynamics and solute transport in a representative segment of the spinal canal. RESULTS Our models reproduce the empirically determined hyperbolic relation between albumin and IgG quotients. They indicate that variation in CSF drainage would yield a linear rather than the expected hyperbolic profile. In contrast, modelled barrier dysfunction reproduces the experimentally observed relation. CONCLUSIONS High levels of albumin identified in the Reiber diagram are more likely to originate from a barrier dysfunction than from a reduction in CSF drainage. Our in silico experiments further support the hypothesis of decreasing spinal CSF drainage in rostro-caudal direction and emphasize the physiological importance of pulsation-driven dispersion for the transport of large molecules in the CSF

    Summary of the performances of the superconducting electron cyclotron resonance ion source at 14 GHz

    Get PDF
    This article deals with the most recent performance of the superconducting electron cyclotron resonance ion source (SERSE) working at 14 GHz with high magnetic fields after the required conditioning and optimization of several operating parameters. SERSE has now achieved an outstanding level of performance in delivering highly charged ion beams in argon and oxygen gases: the results obtained while operating in a stainless steel chamber and with an aluminum liner are shown and discussed

    RA-specific expression profiles and new candidate genes

    Get PDF
    Objective: To identify rheumatoid arthritis- (RA)-specific profiles of differentially expressed genes. Methods: Synovial tissues from RA and osteoarthritis (OA) patients and from normal joints were selected according to their disease-characteristic histology. Gene expression was analyzed using DNA microarrays (GeneChip; Unigene-array) and representational difference analysis (RDA). Data were validated on larger cohorts of patients by RT-PCR. Results: Nine hundred and eighty genes were significantly regulated in RA synovial tissue as compared with non-RA. Specialized cluster analysis identified a set of 312 genes as sufficient of unequivocally discriminating RA from non-RA patterns (class discovery). Genes of highest regulation were associated with leukocyte activation (chemokines, chemokine receptors, B- and T-cell genes), endothelial and angiogenic activation, tissue destruction and remodelling [MMP-3, BMP-4, TIMPs]. Interestingly, a large set of genes was down-regulated in RA (TGF-ÎČ superfamily, apoptosis-related genes, transcription factors). Osteopontin-like genes (n=46) — up-regulated in RA — and glutathione peroxidase-3-like genes (n=85) — down-regulated in RA — yielded the highest correlation coefficients (>0.94). Megakaryocyte stimulating factor (MSF), down-regulated in a subset of RA, may hold the key to subclassification: a loss-of-function mutation in the MSF-encoding gene leads to synovial hyperplasia in camptodactyly–arthropathy–coxa vara–pericarditis syndrome, and, as in RA, also to pericardial involvement. A further candidate, vitamin-D3-up-regulated protein-1 (VDUP-1), is regulated like MSF and predisposes to premature coronary artery disease when mutated, again a feature of a subset of RA. Conclusion: RA specific gene profiles were identified and are useful to improve diagnostics of the disease. Novel gene candidates not yet in the focus of RA pathogenesis have been identified that are likely to further the understanding of RA

    Observational Evidence for Massive Black Holes in the Centers of Active Galaxies

    Full text link
    Naturally occurring water vapor maser emission at 1.35 cm wavelength provides an accurate probe for the study of accretion disks around highly compact objects, thought to be black holes, in the centers of active galaxies. Because of the exceptionally fine angular resolution, 200 microarcseconds, obtainable with very long baseline interferometry, accompanied by high spectral resolution, < 0.1 km/s, the dynamics and structures of these disks can be probed with exceptional clarity. The data on the galaxy NGC4258 are discussed here in detail. The mass of the black hole binding the accretion disk is 3.9 times 10^7 solar masses. Although the accretion disk has a rotational period of about 800 years, the physical motions of the masers have been directly measured with VLBI over a period of a few years. These measurements also allow the distance from the earth to the black hole to be estimated to an accuracy of 4 percent. The status of the search for other maser/black hole candidates is also discussed.Comment: 24 pages, 11 figures, latex, uses aaspp4 style file. To be published in the Journal of Astronomy and Astrophysics (India), proceedings of the Discussion Meeting on the Physics of Black Holes, Bangalore, India: December 199

    The Westerbork HI Survey of spiral and irregular galaxies III: HI observations of early-type disk galaxies

    Get PDF
    We present HI observations of 68 early-type disk galaxies from the WHISP survey. They have morphological types between S0 and Sab and absolute B-band magnitudes between -14 and -22. These galaxies form the massive, high surface-brightness extreme of the disk galaxy population, few of which have been imaged in HI before. The HI properties of the galaxies in our sample span a large range; the average values of M_HI/L_B and D_HI/D_25 are comparable to the ones found in later-type spirals, but the dispersions around the mean are larger. No significant differences are found between the S0/S0a and the Sa/Sab galaxies. Our early-type disk galaxies follow the same HI mass-diameter relation as later-type spiral galaxies, but their effective HI surface densities are slightly lower than those found in later-type systems. In some galaxies, distinct rings of HI emission coincide with regions of enhanced star formation, even though the average gas densities are far below the threshold of star formation derived by Kennicutt (1989). Apparently, additional mechanisms, as yet unknown, regulate star formation at low surface densities. Many of the galaxies in our sample have lopsided gas morphologies; in most cases this can be linked to recent or ongoing interactions or merger events. Asymmetries are rare in quiescent galaxies. Kinematic lopsidedness is rare, both in interacting and isolated systems. In the appendix, we present an atlas of the HI observations: for all galaxies we show HI surface density maps, global profiles, velocity fields and radial surface density profiles.Comment: 24 pages, 11 figures. Accepted for publication in A&A. A version with the full atlas can be downloaded from http://www.astro.rug.nl/~edo/WHISPIII.ps.gz (gzipped postscript, 9.3Mb
    • 

    corecore